If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x=420
We move all terms to the left:
2x^2+8x-(420)=0
a = 2; b = 8; c = -420;
Δ = b2-4ac
Δ = 82-4·2·(-420)
Δ = 3424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3424}=\sqrt{16*214}=\sqrt{16}*\sqrt{214}=4\sqrt{214}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{214}}{2*2}=\frac{-8-4\sqrt{214}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{214}}{2*2}=\frac{-8+4\sqrt{214}}{4} $
| 4x+93=17 | | 10/12=15/x | | 25y-5-2y+8=10 | | y=1+2(4/5) | | 3(-3-3x)+4=-5. | | (25y-5)-(2y+8)=10 | | Y/12/48=-7/y | | (3v-7)=0 | | 15+12a=99-22a | | x2+7=7x | | (3m-4)/4-1/5=m/4+3/10 | | (-2/3)x=14 | | (x−1)(x−2)(x−3)(x−4)(x−5)=0 | | (3v+2)=0 | | 2k-14=2k-13 | | (2y-3)(2y-1)=5y | | x^2+51=100 | | 4a=(20–4a)5 | | (14+x)/3=-4 | | 5-(6k+1)=(5k-3)-(k-2)*(5k-3)-(k-2) | | 5-6K-1=(5k-3)-(k-2)(5k-3)-(k-2) | | 0.25c-8=4 | | 3(m-5)=3(m+1) | | (3z-7)(8-z)=0 | | 5b-4=12b-8 | | 15^(y+6)=11 | | 6x+x=32 | | (2x+5)+(4x+6)=(2x+4x)+(5+6) | | 2x×4x=32 | | 5X+32=2X+3x42 | | (4t3+3t2)−(t3+t2+t)=(4t3+3t2)−(t3+t2+t)= | | 2x-5/10-1-x/5=0 |